Nitrite reductase of Nitrosomonas europaea is not essential for production of gaseous nitrogen oxides and confers tolerance to nitrite.
نویسندگان
چکیده
A gene that encodes a periplasmic copper-type nitrite reductase (NirK) was identified in Nitrosomonas europaea. Disruption of this gene resulted in the disappearance of Nir activity in cell extracts. The nitrite tolerance of NirK-deficient cells was lower than that of wild-type cells. Unexpectedly, NirK-deficient cells still produced nitric oxide (NO) and nitrous oxide (N(2)O), the latter in greater amounts than that of wild-type cells. This demonstrates that NirK is not essential for the production of NO and N(2)O by N. europaea. Inactivation of the putative fnr gene showed that Fnr is not essential for the expression of nirK.
منابع مشابه
Novel nirK cluster genes in Nitrosomonas europaea are required for NirK-dependent tolerance to nitrite.
Nitrite reductase (NirK) of Nitrosomonas europaea confers tolerance to nitrite (NO2-). The nirK gene is clustered with three genes of unknown physiological function: ncgABC. At present, this organization is unique to nitrifying bacteria. Here we report that the ncgABC gene products facilitate NirK-dependent NO2- tolerance by reversing the negative physiological effect that is associated with th...
متن کاملDenitrification and ammonia oxidation by Nitrosomonas europaea wild-type, and NirK- and NorB-deficient mutants.
The phenotypes of three different Nitrosomonas europaea strains--wild-type, nitrite reductase (NirK)-deficient and nitric oxide reductase (NorB)-deficient strains--were characterized in chemostat cell cultures, and the effect of nitric oxide (NO) on metabolic activities was evaluated. All strains revealed similar aerobic ammonia oxidation activities, but the growth rates and yields of the knock...
متن کاملGenome-Scale, Constraint-Based Modeling of Nitrogen Oxide Fluxes during Coculture of Nitrosomonas europaea and Nitrobacter winogradskyi
Nitrification, the aerobic oxidation of ammonia to nitrate via nitrite, emits nitrogen (N) oxide gases (NO, NO2, and N2O), which are potentially hazardous compounds that contribute to global warming. To better understand the dynamics of nitrification-derived N oxide production, we conducted culturing experiments and used an integrative genome-scale, constraint-based approach to model N oxide ga...
متن کاملSteady-State Growth under Inorganic Carbon Limitation Conditions Increases Energy Consumption for Maintenance and Enhances Nitrous Oxide Production in Nitrosomonas europaea.
UNLABELLED Nitrosomonas europaea is a chemolithoautotrophic bacterium that oxidizes ammonia (NH3) to obtain energy for growth on carbon dioxide (CO2) and can also produce nitrous oxide (N2O), a greenhouse gas. We interrogated the growth, physiological, and transcriptome responses of N. europaea to conditions of replete (>5.2 mM) and limited inorganic carbon (IC) provided by either 1.0 mM or 0.2...
متن کاملTranscriptome of a Nitrosomonas europaea mutant with a disrupted nitrite reductase gene (nirK).
Global gene expression was compared between the Nitrosomonas europaea wild type and a nitrite reductase-deficient mutant using a genomic microarray. Forty-one genes were differentially regulated between the wild type and the nirK mutant, including the nirK operon, genes for cytochrome c oxidase, and seven iron uptake genes. Relationships of differentially regulated genes to the nirK mutant phen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 184 9 شماره
صفحات -
تاریخ انتشار 2002